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1. INTRODUCTION AND PRELIMINARIES:

In 1906, F.Frechet first introduced metric space. Till now, so many spaces are generalized from metric space. Among the
generalized metric space, multiplicative metric space is one. The definition of multiplicative metric space was given by Michael
Grossman and Robert Katzin 1967-1970.

In 2012, Ozavsar and Cevikel [7] introduced the concept of multiplicative contraction mapping and proved some fixed point
theorems for this type of mappings. In 1987, Guo and Lakshmikantham [2] first given the definition of coupled fixed point.
Later, Bhaskar and Lakshmikantham [10] proved a new fixed point theorem for a mixed monotone mapping in a metric space by
using a weak contractivity type assumption with applications.

In, 2011, V. Berinde and M. Borcut [12] introduced the concept of triple fixed point for nonlinear mappings in partially
ordered complete metric spaces and obtained existence and uniqueness theorems for contractive type mappings.

In this paper we first prove a tripled fixed point theorem and obtain the result of L. Shanjit and Y. Rohen [6] as a corollary.
Further we introduce the concept of quartet fixed point and prove fixed point theorem in a partially ordered multiplicative metric
space, which is an extension of the result 2.1 of L. Shanjit and Y. Rohen [6]. Two supporting examples are provided.
Definition 1.1. (A.E.Bashirov, E.M. Kurpinara., Ozyapici [1]). Let X be a nonempty set. A multiplicative metric is a mapping

d: X x X — R" satisfying the following conditions:

(i) d(x,y)=1forall X,ye X and d(x,y)=1,ifandonlyif x=1y.

(i) d(x,y)=d(y,x) forall Xx,ye X .

(iii) d(x,y) <d(x,z).d(z,y) forall X,y,ze X . (Multiplicative triangle inequality)

Also (X,d) is called a multiplicative metric space.

Note that R™ is a multiplicative metric space with respect to the multiplication.

Example 1.2. (M.Ozavser, A.C. Cevikel [7]). Let d":(R*)"x(R")" — R™ be defined as follows
A X
Yil Y2
where X = (X, X,,.-.X,), Y= (Y, Yo, Y, ) ER" and | ""R" > R"is

* *

d*(x,y) =
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aifax1

d'=< 1 . Then ((R*)",d") is a multiplicative metric space.
= if a<1
a

Example 1.3. (M.Ozavser, A.C. Cevikel [7]). Let & >1 be fixed real number. Then d, :[] " " is defined by

n
Wi~

d,(w,z)=a" where W= (W, W,,..W,),Z=(Z,2,,..2,) el ".

Obviously, (J ",d,) isa multiplicative metric space. We can also extended multiplicative metric C" by the following

definition: d_(w,z) = a‘zllWl_ZI where W= (W,,W,,..W,),Z =(Z,,2,,...2,) € C".

Definition 1.4. (M.Ozavser, A.C.Cevikel. [7]). (Multiplicative convergence). Let (X,d) be a multiplicative metric space,
{X,} be asequencein X and X € X . If for every multiplicative open ball B, (X) ={y/d(X,y) <&},&>1 thereexistsa
natural number N such that for N> N, X, € B, (X), the sequence {X,} is said to be multiplicative converging to X , denoted
by X, > X (n—> x®).

Definition 1.5. (M.Ozavser, A.C. Cevikel [7]). Let (X,d) be a multiplicative metric space, {X,} be asequence in X . The
sequence {X, } is called a multiplicative Cauchy sequence if, for each & >1, there exists N € N such that d (X, X, ) < &, for
all mn>N.

Definition 1.6. (M.Ozavser, A.C. Cevikel [7]). Let (X,d) be a multiplicative metric space. We call (X,d) is complete if

every multiplicative Cauchy sequence in X is multiplicative convergentto X € X
Definition 1.7. (M.Ozavser, A.C. Cevikel [7]). Let (X,d) be a multiplicative metric space. A mapping f : X — X is

called a multiplicative contraction if there exists a real constant 1 €[0,1) such that d (fx, fy) <d(x,y)”* forall x,y e X .
Definition 1.8. (M.Ozavser, A.C. Cevikel [7]). Let (X,d,) and (Y,d,) be two multiplicative metric spaces and
f : X —Y be afunction. If for every & >1, there exists & >1 such that f (B;(x)) < B, (f (X)), then we call f

multiplicative continuous at X € X .
Lemma 1.9. (M.Ozavser, A.C. Cevikel [7]). Let (X,d) be a multiplicative metric space, {Xn} be a sequence in X and

Xxe X . Then X, > X (n— o) ifand only if d(X,,X) —>1(n — ).

Lemma 1.10. (M.Ozavser, A.C. Cevikel [7]). Let (X,d) be a multiplicative metric space, {Xn} be a sequence in X . Then
{x,} isa multiplicative Cauchy sequence if and only if

d(x,,%,)—>1(m,n— o).

Definition 1.11. (T. Gnana Bhaskar, V. Lakshmikantham [10]). Let (X,<) be a partially ordered setand S: X x X — X.

The mapping S is said to have the mixed monotone property if S is monotone non-decreasing in its first argument and is
monotone non-increasing in its second argument, that is, forany X,ye X,

X, X, € X, % <% = S(X,Y) < S(X,,y) and ¥;, ¥, € X,y < ¥, = S(X, ¥,) = S(X,Y,)

Definition 1.12. (T. Gnana Bhaskar, V. Lakshmikantham [10]). Let (X,=<) be a partially ordered set, an element (X, Yy) is
called a coupled fixed point of the mapping S: X x X x X — X if

S(x,y)=x,S(y,x)=y.

Definition 1.13. (V. Berinde, M. Borcut [12]). Let (X, <) be a partially ordered set and G : X x X x X — X . The mapping
G is said to have the mixed monotone property if for any

X,ye X

X, % € X, % <X, = G(X,Y,2) < G(X,,Y,2)

V.Y, € X,y <Y, =>G(Xy,,2) £ G(X,,,2)

2,2, € X, 22, > G(X,Y,2) < G(X,Y,2,).

Definition 1.14. (V. Berinde, M. Borcut [12]). G: X x X x X — X . Anelement (X, Y, z) is called a tripled fixed point of
G if G(x,y,2)=x, G(y,X,y)=Y and G(z,y,X)=2
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Theorem 1.15. (V. Berinde, M. Borcut [12]). Let (X,=<,d) be a partially ordered set and suppose d is a multiplicative metric
on X suchthat (X,d) isacomplete multiplicative metric space. Suppose F: X x X x X — X issuchthat F has mixed
monotone property and there exist j,r,1 > 0with j+r+1<1suchthat d(F(X,Y,2z), F(u,v,w)) <

ja(x,u) +rd(y,v)+1d(z,w) forany X,y,ze X forwhich X < U, Vv <Yy and Z < W. Suppose either F is
continuous, or X has the following property:

1. if a non-decreasing sequence X, — X, then X, < X Vn.

2. if anon-increasing sequence Y, — Y, then y, £ Yy Vn.

If there exist X, Yy, Z, € X suchthat X, < F(Xy, Yy, 25), Yot F(Yo, X, o) and Z, < F(Z,, Yy, X,) , then there exist
X,Y,ze X suchthat F(x,y,z)=X%, F(y,X,y)=Y and F(z,y,X) =2 thatis, F has a tripled fixed point.

Definition 1.16. (H. Aydi, E. Karapinar [3]). Let (X,d) be a multiplicative metric space. A mapping T : X — X is said to
be ICS if T is injective, continuous and has the property : for every sequence {X.} in X, if {TX,} is convergent then {X_} is

also convergent.
Let @ be the set of all functions ¢ :[0,00) —[0,00) such that

(1) ¢ is non-decreasing,
) p(t) <t forall t >0,
3) lim__ . o(r)<t for all t>0.

Recently L.Shanjiti and Y. Rohen [6] proved the following tripled fixed point theorem in multiplicative metric spces.
Theorem 1.17. (L. Shanjit and Y. Rohen [6]). Let (X,d) be a partially ordered set and suppose there is a multiplicative metric

d on X suchthat (X,d) isacomplete multiplicative metric space. suppose T : X — X is an ICS mapping and
F: XxXxX — X issuchthat F has mixed monotone property. Assume that there exists ¢ € @ such that
d(TF(x,y,2), TF(u,v,w)) < @(max{d(Tx,Tu),d(Ty,Tv),d(Tz,Tw)})

forany X,y,z e X forwhich x<u, Y=V, and Z < W. Suppose either

(@) F is continuous, or

(o) F has the following property:

(1) If non-decreasing sequence X, — X (respectively, z, = Z), then X, < X (respectively z, < z) Vn.

(2) If non-increasing sequence Y, = Y, then y, £ Yy Vn.

If there exists X,, Yo, Zo € X suchthat X, < F (X, Yo,Z0), Yo £ F (Yo, %y, Yo) and z, < F(2Z,,Y,, %,) then there exist
X,Y,ze X suchthat F(x,y,z)=X%, F(y,X,y)=Y and F(z,y,X) =2 thatis, F has a tripled fixed point.
Suppose that for all (X,y,z), (U,v,r) € X x X x X, there exists (a,b,c) € X x X x X such that
(F(a,b,c),F(b,a,b),F(c,b,a)) is comparable to (F(X,Y,2),F(y,X,Y),F(z,Y,X)) and
(F(u,v,r),F(v,u,v),F(r,v,u)) . Then F has a unique tripled point (X,Y,Z).

2. MAIN RESULT.

In this section we first introduce the notion of quartet fixed point for a function of four variables on a partially ordered
multiplicative metric space.

Defini tion 2.1. Let (X, <, d) be a partially ordered multiplicative metric space and G: X x X x X x X — X . An
element (X, Y, Z,S) is called a quartet fixed point of G if G(X,Y,z,5) =X, G(Y,2,5,X) =Y, G(z,5,X,y)=Z and
G(s, X, y,2)=Ss.

Defini tion 2.2. Let (X,<) be a partially ordered setand G : X x X x X x X — X . The mapping G is said to have the

mixed monotone property if G is monotone non-decreasing in its first and third argument and is monotone non-increasing in its
second and fourth argument, that is, forany X,y,z,s€ X,

X% € X, % <% = G(X,Y,2,8)<G(%,, Y,2,9)
Vi Yo € X, Y=Y, = G(X, Yy, 2,9) + G(X,Y,,2,5)
2,2, X,2,<2,=>G(X,Y,2,5)<G(X,Y,2,,9)
s,S, € X,5,<8,=>G(x,Y,2,5)+ G(X,Y,2,8,) .
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Notation:
Let @ be the set of all functions ¢ :[1,00) — [1,00) such that
(i). ¢ isnon-decreasing, @(1) =1,
(i) p(t) <t forall t >1,
(iii) lim__ . o(r) <t for all t >1.

Now we prove quartet fixed point theorems in partially ordered multiplicative metric space, which is a generalization of
the result 2.1 of L. Shanjit and Y. Rohen [6]. First we prove a tripled fixed point theorem in partially ordered multiplicative metric
space and obtain the result of [6] as a corollary.

Theorem 2.3. Let (X, <, d) be a complete partially ordered multiplicative metric space and G: X x X x X — X be such

that G has mixed monotone property.
Assume that there exists ¢ € @ such that

d(G(x,Y,2),G(u,v,w)) < ¢g(max{d(x,u),d(y,v),d(z,w)}) (2.3.1)

forany X,y,z € X forwhich X < U, Y+ U and Z < W. Suppose either

(a) G is continuous, or

(b) G has the following property:

(1) If non-decreasing sequence X, —> X then X, < X Vn.

(2) If non-increasing sequence Y, = Y, then y, £ Yy Vn.

If there exists X,, Yo, Z, € X suchthat X, < G(Xy, Y. Z0) » Yot G(Yo. Xo» Yo) and Zy < G(Z,, Yy, X,) then there exist
X,¥,Z € X suchthat G(X,y,2) =X, G(y,X,y)=Yy and G(z,Y,X) =2 thatis, G has atripled fixed point.
Suppose that for all (X,Y,z), (U,v,w) € X x X x X, there exists (a,b,C) € X x X x X such that
(G(a,b,c),G(b,a,b),G(c,b,a)) is comparable to (G(X, Y, z),G(Y, X, Y),G(z,Y,X)) and
(G(u,v,w),G(v,u,V),G(w,Vv,u)). Then G has a unique tripled point (X, Y, z) .

Proof: Let X,, Yy, Z, € X suchthat X, < G(X;, Yo:20) » Yo = G(Yo, %y, Yo) and Z, < G(Z,, Yo, X,)

Set X, = G(Xo' Yoo Zo), Yi = G(yov Xo» yo) and 2, = G(ZO’ Yoo Xo)- (2.3.2)
Continuing this process, we can construct sequences {X,},{Yy,} and {z,} in X suchthat X ., =G(X,,Y,.Z,),
You =G(Y, X,,Y,) and Z,,, =G(z,,Y,.X,) - (2.3.3)

Since G has the mixed monotone property, then using mathematical induction,

we have X, < X 1, Y,u Tt Yyand 2, < Z ;. (2.3.4)

Assume for some n e N,

Xo = Xoats Yoo = Yo and 2, =27, 08, (X, Vs Z,) = (Xoias Yoer Zoaa)

Then by (2.3.3), (X,,Y,,Z,) isa tripled fixed point of G .

From now on, assume that forany ne N, (X,,¥,,2,) # (Xou1s Yoa1r Zosa)

ie, X, #X,,0or Y, #Y,,and Z, #Z ;. (2.3.5)
Then by (2.3.5), forany ne N,

an+1 = maX{d (Xn ' Xn+1)’ d (yn ! yn+l)’ d (Zn ! Zn+1)} > 1
From (2.3.1) and (2.3.3), we have

d (% Xo.1) = A(G (X, 10 Y15 204), G (%, ¥ 20))

< p(max{d (%, 1,X,),d (Y1, ¥a),d(2,.1,2,)}) (2.3.6)
d(Vniar %) = d(G(Yn X0 ¥n ) G (Yo 1 X1 Yoa))

< p(max{d (Y, ¥, 1),d (%, %, 1), d(Vr Vo s)3)

= p(max{d (Y, ¥ 1), d (X, %, 1)})

< p(max{d(y,,Y,4),d(X,, X,4),d(z,,2,.)}) (2.37)
d (Zn’ Zn+1) = d (G(Zn—l’ yn—l’ Xn—l)’ G(Zn' yn’ Xn)’)
< (D(maX{, d (Zn—l’ Zn)’ d (yn—l’ yn)! d (Xn—l’ Xn )}) (238)

© JGRMA 2018, All Rights Reserved 52



K.P.R.SASTRY et al, Journal of Global Research in Mathematical Archives, 5(7), 49-62

since, @(t) <t Vt>1,so from (2.3.6) to (2.3.8) we get that
1<a,,, =max{d (X, X,,1),d(Y,, Yn1) d(z,,2,,1)}
< p(max{d (x,, %, 1), d (¥, ¥o4).d(2,,2,4)})
<max{d(x,,,x,),d(y,, ¥,).d(z,,,2,)}=a, (2.3.9)
It follows that a,,,, <a,
Thus a,,, is a positive decreasing sequence. Hence there exists I >1 suchthat a,,, decreasesto I .
Suppose r>1 in(2.3.9), we getthat 1<¢(a,)<a,.
On letting N —)loo
1<r < liﬂ(p(an): a!'fr] p(a,)<r = rllii[lan' (2.3.10)

which is a contradiction. .. r =1,

Le., lim(a,.,)=limmax{d (X,, X,,1),d (Yo, ¥n.0), (20, Z,,0)} =1 (2311)
Now we shall prove that {X }, {Y,},and {z,} are Cauchy sequences.

Assume the contrary, i.e., {X,}, {y,}, or {z,} is not Cauchy sequence.

thatis lim d(x,,Xx, ) =1 or I|m d(ym,yn);tl or I|m d(zm, z,)#1

m?“*n
n,m—o0
This means that there exists & >1 for which we can find subsequences of integers {m, },and {n } with {n }>{m}>k
such that max{d (x,, ,x, ), d (Y, .Y, ).d(z,.2,)} > & (2.3.12)

Further, corresponding to {m, } we can choose {n, } in such a way that it is smallest integer with {n, } >{m, } and satisfying
(2.3.12)
Then max{d (X, ,X, ),d(Yy Y, ).d(z, .z, )} = (2.3.13)
by triangular inequality and (2.3.3), we have
d (X, + %, ) < d(X, X, ){d(x, ,X%,)
< e {d(x, %)
Thus, by (2.3.11), we get that
e < I!i_rllod(x ) < Ilmd(xm, n.) < (2.3.14)

m’n

Similarly, we have & I|md(ym Y ) < Ilmd(ymk Yo.) < (2.3.15)
and ¢ < limd(zm 2, ) < llm d(z, .z, ) < ¢ (2.3.16)

Again by (2.3.13), we have

d(X )< d(xmk’ mkl)d(xmk1’ nkl)d(xnkl’ nk)
< d(Xy, Xy, )-d(X ).d (x ).d(x
< d(Xy Xy ) A % ). 0.0 (X, X))

Letting K — 0o and using (2311) we get

e < I!imd(x ) <llel=¢. (2.3.17)

m, ! n

my? mk m ”k1 Mg ! ”k)

Similarly, ¢ < lﬂld(ym Vo) S €. (2.3.18)
< liﬂd(zm Z,) < €. (2.3.19)

Now, using (2.3.12) and (2.3.17)-(2.3.19),we have

g (%, %, ), 0V Yo ), (20,120 )} = & (2:3.20)

Now using (2.3.1), we obtain

d(Xp, » X, ) = A (G (X + Y, Zm )G (X 1+ Vi 1120, ,))

< g(max{d(x, . X%, ), d(Yy ¥, )d(z, .2

d(Ym,» Yo ) =G (Y, X2 Y 1 GV o X 2 Vi, )

)} (23.21)

T
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< gp(max{d (Y, Y, )dX, X, )d(Yy Y )P
p(max{d(Yy, ,» ¥ ), d(Xp 2 %, )}
p(max{d (X, %, ). d(Yn Yy ) d(z, .2, )} (2:3.22)
and d(z,,,2,)=d(G(z,, Y+ Xn ) C(Zy 2 Yo, %))
< p(max{d (x,, . X, ), d(ym“ yn“) d(z, .z

From (2.3.21) to (2.3.23) we get that
max{d (X, . X, ), d (Y, » Yo, ). d(2,, . 2, )}

< p(max{d (%, , %, ), d (Y, Yo, 102,02, )P = & (23.24)
Letting K — 00 in (2.3.24) and having in mind (2.3.20), we get
l1<e < tILT o(t) < &, which is a contradiction.

IA

1)) (2.3.23)

P T

Thus {X,}, {y,}, and {z,} are Cauchy sequencesin X .
Since X is complete multiplicative metric space, {X,}, {y,}, and {z,} are convergent sequences.
So there exist X,Y,ze€ X suchthat X, > X, y, —> Yy and Z, > Z (2.3.25)

Suppose now the assumption (a) holds, thatis G is continuous. By (2.3.3) and (2.3.25) we obtain
X =limx ,=1imG(x,,y.,z,)
nN—o0

n—o

=G(limx,,limy,,, limz)=G(X,Y,2)

Similarly y =limy,,, = limG(y,,X,,Y,)
= G(limy_,limx_, limy )=G(y,X,y)

and z=Ilimz, , = liImG(z,,y,,X,)
n—oo

n—o0
= G(limz,,limy,_, limx,)=G(z,y,Xx)
n—oo n—o0 n—o0
(X, Y,2) isatripled fixed point of G .
Suppose the assumption (b) holds,
ie., {X,}, {z,} are non-decreasing with X, — X, Z, — z and also {Y,} is non-increasing with Yy, — Y, then we have
X <X,z <zZandy Y.
forall n,, Consider now

d(x,G(xy,2))<d (X, %, ,)-d (X1, G(x, ¥, 2))

=d (X X%,,1)-d(G(X,, ¥y, 2,), G(X, Y, 2))

< d(X X,,1) - e(max{d (x,, x),d(y,, ).d(z,,2)}) (2.3.26)
For infinitely many n, ¢(a,) <a,
1< Li_r)gd(x,G(x, y,2)) < !m[d(x, X, ) -max{d(x,,x),d(y,, y),d(z,,2)})] —1

1< limd(x,G(x,y,2)) <1

d(x,G(x,y,2))=1 ..x=G(x,Y,2)

Similarly we can show that Y =G(Y, X,Y) and z=G(z, Y, X)

Hence (X, Y, 2) isatripled fixed point of G .

Unigueness of tripled fixed point:

Let (X,Y,2) and (u,V, W) are two tripled fixed points of G .

Suppose (X,Y,2) < (u,v,w) ie, X<U, yxVvand Z<W.

d(x,u) =d(G(x,Y,2),G(u,v,w)) < ep(max{d(x,u),d(y,v),d(z,w)})
=p(d(x,u) <d(x,u) (if d(x,u) is maximum)

~.d(x,u) <d(x,u), acontradiction, if d(x,u) >1.
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sd(x,u)=1d(y,v)=Ld(z,w) =1
SX=UY=V,Z=W
(%Y, 2)=(u,v,w).
By our assumption, there exists (a,b,¢) € X x X x X suchthat (G(a,b,c),G(b,a,b),G(c,b,a)) is comparable to
(G(x,Y,2),G(Y,X%,Y¥),G(z,y,Xx)) and (G(u,v,w),G(v,u,Vv),G(w,v,u)).
Define sequences {a,}, {b,} and {C,} suchthat a, =a, b, =b and ¢, =c
and forany n>1,
a,=G(a,,,b,,.c. ), b =G0, a,Db, ;) ad c, =G(c, ;b ,a,,) Vn (2327
forall n.
Furtherset X, =X, Yo=Y, Z;=Z and U, =U, V, =V, W, =W,
and in the same way we define the sequences {X.}, {V,}. {z,} and {u,}, {v,} and {w }.
Then it follows that G(X, Y, z) =X,, G(y, X, ¥)=VY,, G(z,y,X) =2,

G(u,v,r)=u,, G(v,u,v)=v,, G(r,v,u)=r, Vn >1. (2.3.28)
since (G(X,Y,2),G(Y,X,¥),G(z,Y,X)) = (X, ¥;,2,) =(X,Y,2) is comparable to
(G(a,b,c),G(b,a,b),G(c,b,a)) =(a,b,c,)

Then it is enough to show that (X,y,z) = (a;,b,,c,)

Recursively, we get that (X,Y,z)+ (a,,b,,c,) Vn (2.3.29)
By (2.3.29) and (2.3.1), we have
d (X1 an+1) = d (G(X, yv Z)! G (an ' bn ! Cn ))

< p(max{d(x,a,),d(y,b,),d(z,c,)}) (2.3.30)
d(b,.,, ¥)=d(G(b, a,,b,),G(y, x,y))
< p(max{d(b,, y).d(a,,x),d(b,, y)})
= p(max{d(b,, y),d(a,,x)})

< p(max{d(b,, y),d(a, x),d(c,, 2)}) (2:3.31)
and d(z,c,,;)=d(G(z,Y,x),G(c,,b,,a,))
< p(max{d(z,c,),d(y,b,),d(x,a,)}) (23.32)

It follows from (2.3.30)-(2.3.32) that
max{d(x,a,,).d(y.b,.,),d(z.¢,,)} < p(max{d(xa,),d(y,b,).d(z,c,)})
there fore, for each N>1,
(max{d(z,c,),d(y,b,),d(x,a,)}) < ¢(max{d(z,c,,),d(y,b,,).d(x,a,,)})
< @"(max{d(x,a,),d(y,b,),d(z,c,)}) (2.3.33)
We know that ¢(t) <t and !I_[tn o(r) <t= !m o"(t)=1
foreach t >1, thus, from(2.3.33)
,I1I_r>2 max{d(x,a,),d(y,b,),d(z,c,)}=1

ie, limd(x,a,)=1, limd(y,b,)=1and limd(z,c,)=1 (2.3.34)
Analogously, we show that
limd(u,a,) =1, limd(v,b,)=1and limd(r,c,) =1 (2.3.35)

Combining (2.3.34) and (2.3.35), it follows that (X, Y, z) and (u,V, W) are equal.
S.X=U,y=V, and Z=W. Hence Uniqueness holds.

Corollary 2.4. Let (X,<) be a partially ordered set and suppose there is a multiplicative metric d on X such that (X,d) is

a complete multiplicative metric space. Suppose T : X — X isan ICS mappingand F : X x X x X — X be such that F
has mixed monotone property. Assume that there exists ¢ € @ suchthat d(TF(X,y,z),TF(u,v,w)) <

p(max{d(Tx,Tu),d(Ty,Tv),d(Tz,Tw)})
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forany X,y,z € X forwhich Xx<u, y= Vv, and Z<W. Suppose either

(@) F iscontinuous, or

(b) F has the following property:

(1) If non-decreasing sequence X, — X (respectively, Z, — Z), then X, <X (respectively z,<Z) Vn.

(2) If non-increasing sequence Y, — Y, then y, £ Yy Vn.

If there exists X,, Yy, Z, € X suchthat X, < F(Xy, Y5, Z5) s Yo £ F (Yo, %o Yo) and Z,<F(2Z,, Yy, X,) then there exist
X,Y,Zze€ X suchthat F(x,y,z)=X%, F(y,X,y)=Y and F(z,y,X) =2 thatis, F has a tripled fixed point.
Suppose that for all (X,Y,z), (U,v,w) e X x X x X, there exists (a,b,c) e X x X x X such that
(F(a,b,c),F(b,a,b),F(c,b,a)) is comparable to (F(X,Y,2z), F(y,X,¥y),F(z,y,x)) and

(F(u,v,w), F(v,u,v), F(w,Vv,u)). Then F has a unique tripled point (X,Y,Z).

Proof: Put G=TF intheorem 2.3
Now we state and prove quartet fixed point theorem.

Theorem 2.5. Let (X,<,d) be a complete partially ordered multiplicative metric space and G: X x X x X x X — X be

such that G has mixed monotone property.
Assume that there exists ¢ € @ such that

d(G(x,Y,2,5),G(u,v,w, p)) < e(max{d(x,u),d(y,v),d(z,w),d(s, p)}) (25.1)

forany X,Y,z,S,U,V,w,pe X forwhich Xx<u, y£+V, Z<Wand S+ p.
Suppose either
(a) G is continuous, or

(b) G has the following property:
(1) If non-decreasing sequence X, —> X, then X, <X Vn.

(2) If non-increasing sequence Yy, — Y,then y, =y Vn.

If there exists Xy, Yo, Z9,Sy € X such that X, <G(Xy, Yo, Z5:S0)s Yo = C(Yo» ZgsSos o) Zo <G(Z5, Sy, %o Y,) and

Sy = G(Sys X, Yor Zy) , then there exist X, Y, z,s € X suchthat G(X,Y,z,8) =X, G(Y,z2,5,X)=Y, G(z,5,X,y)=12
and G(S,X,Y,2z)=s.Thatis, G has a quartet fixed point.

Suppose that for all (X,Y,z,s), (U,V,w, p) € X x X x X x X, there exists (a,b,c,d) e X x X x X x X such that
(G(a,b,c,d),G(b,c,d,a),G(c,d,a,b),G(d,a,b,c)) is comparable to
(G(x,Y,2,9),G(y,z,5,%),G(z,5,%,¥),G(s, X, ¥, 2)) and (G(u,v,w, p),G(v,w, p,u),G(w, p,u,Vv),G(p,u,Vv,w)) .
Then G has a unique quartet fixed point (X, Y, Z,S).

Proof: Let Xy, Yy, Zy,S, € X besuchthat X,<G(Xy, Yo, Z5,S5) Yo £ G(Yo»Zg:S0: %0) » Zo<G(Zy,Sy: %, ¥,) and
So 'iG(So’XO’ Yo Zo)-

Set X :G(Xo’ yO’ZO'SO) ' Y1 ZG(yO’ZO'SO’XO)! Z :G(Zo’soyxo’ YO)and

S, =G(Sy, X1 Yo Zo)- (2.5.2)

Continuing this process, we can construct sequences {X, },{y,}, {z,} and {s,} in X suchthat X.,, =G(X,,V¥,.Z,.S,).
Yoo =G (Va1 20,800 %) s Zi = G(2,, 85, %, Y,) and

St =G(S1, Xy, Yo Z4) (2.5.3)
Since G has the mixed monotone property, then using mathematical induction,
we have X, <X,.1, Yo ® Yoo 2,32y, and Sy + S, (2.5.4)

Assume for some N e N,

Xo = Xurs Yoo =Yoo Zy =25 and S, =S

ie, (X, Y, Z,,S,) = (xml, Yoot Zoigr Sut)

Then by (2.5.3), (X,, Y, Z,,S,) is a quartet fixed point of G .

From now on, assume that for any n e N, (xn, YoiZns n) # (Xn+1' Yoitr Zowns M)

ie, X, #X,,0r Y, #Y, 0rZ, #Z ,0rS, #S, ;. (2.5.5)
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Then by (2.2.5), forany n e N, write

8,1 = max{d (X,, X,,1), d(Yn, Ynua), A (24, 2,,1), A (S, 8,0) 3 > 1.
From (2.5.1) and (2.5.3), we have

d(Xn,XnH) = d(G(Xn—l’ Yn-11 2019 Sy 1) G(Xnv Yn1Zs n))

< p(max{d (X, 1, %,),d (Y, 4, o), d (2,4, 2,),d (S, 4,8,)}) (2.5.6)
d(ynw yn) :d(G(yn'Zn’ n'Xn) G(yn 1 Lo Shn X, 1))
< p(max{d(y,,y,,).d(z,.z,,).d(s,,S, ). d(X,, X, 1)}) (2.5.7)
d(z,,2,,1) = d(G(Z, 4,11 Xpas Yos) G(Z,,8,, X1, Yi)))
< p(max{d(z, ;,z,),d(s,,S,),d (X, 5, %), d (Y, 1, o)} (2.5.8)
and d(SnH,Sn) d(G(Sn, n!ynizmzn)'G(Snfl’ Xoar Yno1 Znoas n—l))
< p(max{d(s,,s,1), d (X, X, 1), d (¥, Yo r), (2, 2,)}) (25.9)

Since, @(t) <t Vt>1, from (2.5.6)-(2.5.9) we get that
L1<an,; =max{d(X,, X,,1),d Yy ¥nia)r d(Z,, 2,,0), A (S, 8,,0) 3
< p(max{d (X, %, 1), d(Yn, Yn-1) (24, 2,4), d(S,,8,4)3)
< max{d (Xn’ Xn—l)’ d (yn’ yn—l)’ d (Zn ) Zn—l)’ d (Sn ) Sn—l)} =a, (2.5.10)
It follows that a@,,, <@,

Thus {a,,,} is a positive decreasing sequence. Hence there exists r >1 such that a,,, decreasesto I .

n+1
Suppose r>1 in(25.10), wegetthat 1<a , <¢(a,)<a,. (2.5.11)
On letting N — oo
1<r < limg(a,)= lim ¢(a,)<r = lima,.

n—o a,—>r" n—o

which is a contradiction. Sr=1.

€. !]Lrpo(anﬂ) = rllm maX{d (Xn ' Xn+1)’ d (yn’ yn+1)’ d (Zn’ Zn+1)’ d (Sn ' Sn+1)} = 1 ' (2'5'12)
Now we prove that {X.}, {V,}, {z,} and {S,} are Cauchy sequences.
Assume the contrary, i.e., {X,}, {Y,}, {z,} or {S,} is not Cauchy sequence.

thatis lim d(x_,Xx )#1 or I|m d(ym,yn);tlor I|m d(z,,z,)#1or I|m d(s,,s.)#1

m’n m'n m’n

This means that there exists & >1 for which we can find subsequences of integers {mk} and {n, } with {n, } $>$ {m } >k
such that max{d (x,, ,x, ).d(y,, .V, ). d(z, .z, ),d(z, ,z,)} = (2.5.13)

Further, corresponding to {m, } we can choose {n, } in such a way that it is the smallest integer with {n, } >{m, } and
satisfying (2.5.13)

Then max{d (x,, , X, ). d(Y, .Y, ).d(z, .z, ). d(s, .S, )} < (2.5.14)
by triangular inequality and (2.2.14), we have
d (X, %, ) <d (X%, ) {d(X, . %, ) <& {d(x, . %,)
Thus, by (2.5.12), we get that
gglimd(xm X, )<I|md(xrn Xy ) SE (2.5.16)
Similarly, we have & < IImd(ym Y ) < Iim d(Yp Yo ,) S € (2.5.16)
e < lim d(z, ,z,) < Ilmd(zm 2, ) <€ (2.5.17)
and & < limd(sm /Sy ) < Ilmd(sm Sy ) S € (2.5.18)
Again by (2.5.14), we have
d(Xp, X, ) < A% % )-d (X X, A (X, 0 X,)

— d(xm’ my_ )d(X mk)'d(xm’ n,_. )d(Xnkl’ n)
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Letting K — oo and using (2.5.12), we get

& glimd(xm, X,) Sllel=¢. (2.5.19)
Similarly,
e < lI(imd(ym Yo ) S €. (2.5.20)
< limd(zm, z,) < ¢ (2.5.21)
and & < limd(sm Sy ) < (25.22)
Now, using (2.5.13) and (2.5.19)-(2.5.22), we have
limgd (%, %, 0,8 (Vi 2 Vo), 02,200,580 03 = & (25.23)
Now using (2.5.1), we obtain that
d(ka’ Ny ) - d(G(Xm“'ymkfﬂzm“'smk 1) G(X”m y"kl’znkl’snk 1))
< p(max{d (X, %, ), d(Yn, + Yo, ) d(Zm“, Z,, ) d(Sy 18, )} (2.5.24)
d(ymk,ynk):d(G(ymk,l,ka,l, meyt Xm, G Yo Zo Sn 0 %))
< p(max{d(yy, .y, ). 0@, .2, ). (smk_l, ) 40 %, )D) (25.25)
d (ka ! an) = d ((B(kai1 ! Smkf1 ! ka 1! ymk l) G(an 4! Snk 1! Xnk 4! ynk l))
S (maX{d (Zm 4! nki) d(s 1! nkl) d(Xm 4! nkl) d(ymk1’ynk1)}) (2526)
( m ! n ) - d(G(Sm 1’ka1 ym“’ m“) G(Sn 1’X”k1 ynH’anl))
< g(max{d(s,, s, ). d(X, %, ). d(Yn .Y, ).d(zZ, .2, )}) (2.5.27)

From (2.5.24) to (2.5.27) we get that

max{d (X, , X, ), d(Yn, + ¥y, ), (2, 2, ), d (S, 1S, )}
< gmax{d (%, %, )0V, Yo, )0 (2, 12

Letting K — 00 in (2.5.28) and having in mind (2.5.23), we get

l<e < lim ¢(t) < &, which is a contradiction.

t—o"

).d(s, .8, )= ¢ (2.5.28)

k-1’ nkl P M

Thus {X,}, {y.}, {z,} and {s,} are cauchy sequences in X . Since X isa complete multiplicative metric space, {X,},
{v.}. {z,} and {s,} are convergent sequences.
So there exist X, Y,z,S€ X suchthat X, > X, y, =Y,z , —>ZandS, =S (2.5.29)

Suppose now the assumption (a) holds, thatis G is continuous.
By (2.5.3) and (2.5.29) we obtain that

x=limx , = rl]i_IIIOG(Xn’yn’Zn' S,) = G(!mxn,!]myn, !ijpozn, rI]i_r)p()s,]):G(x, Y,Z,8)

n—oo

Similarly y:Iim You = IimG(yn,zn,sn,xn) = G(Iim Y., limz, lims , limx )=G(y,zs,X)

z=Ilimz,, = IlmG(zn, XY, = G(Ilmz Ilms Iimxn, limy )=G(z,s,XY)
n—owo —>0 N—0 N—o0
and s=1lims,_, = IlmG(sn, n,yn,zn):G(Ilmsn, limx,, limy,, limz )=G(s,x,Y,2)
n—oo n—o0 n—o0 n—o n—o

- (X,Y,2,8) isaquartet fixed point of G .
Suppose the assumption (b) holds,
ie., {x.}, {z,} are non-decreasing with X, — X, z, — Z and also {Y,}, {S,} are non-increasing with y, — Y,

S, —> S, thenwe have X <X, Z,<Z, Yy, £ Y,and S, = S.

forall n, Now consider

d(x,G(x,Y,z,9))<d(xX,,,)-d(X,.,,G(X,Y,2,5))
=d(x,X,,,)-d(G(x,,Y,,2,,S,),G(X,Y,Z,9))
< d(X, X,,,)-@(max{d(x,,x),d(y,,y),d(z,,z),d(s,,S)}) (2.5.30)

For infinitely many N, ¢(a,) <a,

1< limd(x,G(x y,2,5)) < im[d(x,x,.,)mad (%, ), d(y,, ¥),d(z,,2).d(s, 9] —1
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1<limd(x,G(x,Y,z5s)) <1
n—oo

d(x,G(x,Yy,z,5)=1.

- x=G(x,Y,2,9).

Similarly we can show that y =G(Y, z,5,X), z=G(z,S,Y,X) and s=G(S,X, Y, 2)

Hence (X,Y,Z,S) is a quartet fixed point of G .

Unigueness of quartet fixed point:

Let (X,Y,2,S) and (U,Vv,w, p) be two quartet fixed points of G .

Suppose (X,Y,2,8) < (U,v,w, p)ie, X<u, y£V, z<wand S+ p.

d(x,u)=d(G(x,Y,z,5),G(u,v,w, p)) < e(max{d(x,u),d(y,v),d(z,w),d(s, p)})
=@(d(x,u) <d(x,u) @if d(x,u)ismaximum)

(d(x,u) <d(x,u)

a contradiction, if d(x,u) >1.
sd(x,u)=1d(y,v)=1d(z,w)=1,d(s,p) =1
S X=U,y=V,Z=Wand S=p

S (%Y, 2,8) =(u,v,w, p).
By our assumption, there exists (@,b,c,d) € X x X x X x X such that

(G(a,b,c,d),G(b,c,d,a),G(c,d,a,b),G(d,a,b,c)) is comparable to
(G(x,v,2,9),G(Y,2,5,X),G(z,8, %, ¥),G(S, X, ¥, 2)) and (G(u,v,w, p),G(v,w, p,u),G(w, p,u,Vv),G(p,u,v,w)).
Define sequences {a,}, {b,}, {C,} and {d,} suchthat a, =a, by=b, ¢, =C and d, =d

and forany n>1,

a,=G(a,,,b,,.c ., d ), b =G, ,d ,.a.,),

c,=G(,,.d,,,a,,,b,,)and d, =G(d, ,,a,,,b,;,C ;) ¥n (25.31)

forall n, furtherset X, =X, Y, =Y, Z,=2,5,=S and U, =U, V, =V, Wy, =W, P, =P

and in the same way, we define the sequences {X.}, {Y,.}, {z,}. {s,} and {u,}, {v,}. {w.}. {p,}.

Then it is easy to show that G(X, Y, z,8) =X,, G(Y,z,5,X)=VY,, G(z,s,X,y) =2, and G(S,X,Y,Z) =S, .
also G(u,v,w, p)=u,, G(v,w, p,u)=v,, G(w, p,u,v)=w, and G(p,u,v,w)=p, Vn>1.(25.32)
since (G(x,Y,2,5),G(Y,2,5,X),G(z,8,%,Y),G(s, % Y,2)) = (X, ¥,,2,5) =(X,Y,2,9) iscomparable to
(G(a,b,c,d),G(b,c,d,a),G(c,d,a,b),G(d,a,b,c)) = (a,b,c,,d

Then it is enough to show that (X, y,z,s) £ (a,,b;,c;,d;)

Recursively, we get that (X,Y,z,8) = (a,,b,,c,,d,) V¥n (2.5.33)

By (2.5.33) and (2.5.1), we have
d(x,a,,,)=d(G(x,y,z5),G(a,,b,c,.d,))

< p(max{d(x,a,),d(y,b.),d(z,c,),d(s,d,)}) (2.5.34)
d(b,.,.y) =d(G(b, c,.d,.a,).G(Y.2,5.X)
< p(max{d(b,, y),d(c,,2),d(d.,s),d(a,,x)}) (2.5.35)
d(z.¢,,) = d(G(z,5,xY),G(c,.d,.a,.b,))
< p(max{d(z,c,),d(s,d,),d(x,a,),d(y,b )} (2.5.36)
and d(d_,,5)=d(G(d,,a b c.),G(s XY, z))
< p(max{d(d,,s),d(a,,x),d(b,, y),d(c,,2)}) (2.5.37)

It follows from (2.5.34)-(2.5.37) that

max{d(x,a,,,),d(y,b,,,),d(z,c,,,).d(s,d,..)} < e(max{d(xa,),d(y,b,).d(z,c,),d(s,d,)})
there fore, for each N >1,

(max{d(x,a,),d(y,b,),d(z,c,),d(s,d )}) < ¢(max{d(x,a, ), d(y,b,,).d(z,c,,,d(s,d, )}
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< @" (max{d(x,a,),d(y,b,),d(z,¢c,),d(s,d,)}) (25.38)
Since ¢(t) <t and !Irtn o(r) <t = !]ilpo¢"(t)=1
foreach t >1, thus, f?om(2.5.38)
!]Lrgmax{d(x,an),d(y,bn),d(z,cn),d(s,dn)}:l

ie, limd(x,a,)=1, limd(y,b,)=1,
limd(z,c,)=1and limd(s,d ) =1 (2.5.39)

n—oo

Analogously, we show that
limd(u,a,)=1, limd(v,b,)=1,
nN—0 N—0

limd(w,c,)=1, and limd(p,d,)=1 (2.5.40)

n—oo

Combining (2.5.39) and (2.5.40), it follows that (X, Y, Z,S) and (u,V,w, p) are equal.
SX=U,y=V, Z=w, and S=p.

Hence Uniqueness holds.
Now we give two examples in support of our Theorem 2.5. It may be observed that a cursory look at the examples

will not yield the quartet fixed point. We conclude the existence of the quartet fixed point only via our Theorem 2.5.

1 _
Example 2.6. Let X =[§,64] with the multiplicative metric d(x,y) =a*™, a>1 forall X,y e X and the usual

ordering <. Clearly, (X,d) isacomplete multiplicative metric space.

Let G: X x X x X x X be defined by
2

1
G(x,Y,2,8) = IogS(—XSZ)12 +1 V x,¥,z,5€ X and @(t) =t3, te[L,).
y

Here G has the mixed monotone property and is continuous.
Taking X,Y,Z,S,U,v,w,pe X forwhich X<uU, y+£V,z<wand S+ p,
we have

d(G(x,y,z,5),G(u,v,r,1)))

a/C(xy.2.5)-G(uv.w.p)

(10822 1242)-togs (L2 1
ys vp

|{I098+i(log x+log z—i(log y+logs)+1}—{log 8+i (logu+ Iogw—i (logv+log p)+1}
a 24 12 24 12

%ﬂlog x—logul+|log z—log w|+2|logv—log y|+2|log p—logs}
<a

L{|Iog x—logul+|log z—logw|-+|logv—log y|-+|log p—log s}

< a12
1 1 1 1

_ (a|logx—logu|)ﬁ).(a|log z—logw|)ﬁ) .(8.“09 y—logv|)ﬁ. (a\logs—log p|)ﬁ)
= d(log x,log u)ﬁ).d(log z,log W)%) . d(logy,log v)ﬁ . d(logs,log p)é)
< {d(x,u)®). d(z,w)°). d(y,v)¢). d(s, p)°}

2 2 2 2

< max{d(x,u)?). d(z,w)?). d(y,v)?). d(s, p)°}

= max{p(d (x,u)), p(d(z,w)), p(d (Y, V)),(d(s, p))}

= p(max{d(x,u),d(z,w),d(y,v),d(s, p)}
which is a contractive condition of (2.5.1). Moreover, taking X, = Z, =land Y, =S, = 64,
we have XO < G(Xoy y()) ZO,SO), yo + G(y07 ZO’SO’ XO)’
Z, < G(Zo’sovxm YO) and S, + G(So’ Xo1 Yoo Zo)-
Therefore all the conditions of theorem 2.5 hold.
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1
Suppose X=Yy =2z =s.Then G(X,Y,z,5) = log 8(£)12 +1
YS

Now we show that there exists X € (1,64) such that G(X, X, X, X) =X,
i.e., X is a quartet fixed point of G .

1
Consider G(X, X, X, X) = log 8(1)E +loge
X
1 L
Now G(X, X, X,X)=X = Iog[e.8(;)12] =Xx=logy (say)

1.t
= ed(=)2=y=¢
X
8 X_
= — ="
x12
1

— 8=g"1x22
1

— 8—e*tx2 =0,
1
Write f(t) =8—e""t12 in[1,64]

1
Then f(1)=7>0and f(64)=8-e%.22<0

S 3 xe(L,64) suchthat f(x)=0 (by mean value theorem)
1 1
ie, 8—e'x12=0. =8=e""x2.

1 L
log(e8(=)2 = x
X

1.t
e, 10g(8() +1=x

ie, G(X X X, X)=X
therefore X is a quartet fixed point of G .
The exact value of the quartet fixed point is not known but existence is guaranteed.

1 _
Example 2.7. Let X :[5,64] with the multiplicative metric d(x,y) =a”, a>1 forall x,ye X and the usual

ordering <. Clearly, (X,d) is a complete multiplicative metric space.
Let G: X x X x X x X Dbe defined by

1 2
G(x,Y,z,9) = IogS(\/X—iz)12 +1 V X,¥,2,5€ X and ¢(t)=t3, t e[L,0).\
ys

Here G has the mixed monotone property and is continuous.

Taking X,Y,Z,S,U,V,w,pe X forwhich X<u, y+£V,zZ<wand S+ p,
we have

d(G(x,Y,2,5),G(u,v,r,t))) = acty29-6lvwp

I(og8(,|*% )2 +1)~(10g8(, [~ 2 +1)|

- a ys vp

Klog 8+i(log x+log z—i(log y+|ogs)+l}—{|0g8+i(logu+ Iogw—i (logv+log p)+1}
_ a 24 24 24 24

lﬁ“og x—logul+|/log z—log w|+|logv—log y|+|log p—logs}

N

a
i{uog x—logul+|/log z—logw|+|logv—log y|+|log p—logs}
a
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1%Hog x—logu|+|logz—logwl+|logv—logy|+|log p—log s}
< a12

1 1 1 1
— (a|logx—logu|)ﬁ).(a|log z—IogW|)E) I(a|log y—Iogvl)E. (a\logs—log p|)ﬁ)
1 1 1 1

= d(log x,logu)*2).d(log z, logw)®) . d(log y, logv) . d(log s, log p)®)
< {d(x,u)?). d(z,w)®). d(y,v)°). d(s, p)°}

< max{d(x,u)?). d(z,w)?). d(y,v)?). d(s, p)?}
= max{e(d(x,u)), p(d(z,w)),p(d(y,V)),p(d(s, p))}
= p(max{d (x,u),d(z,w),d(y,v),d(s, p)}

which is a contractive condition of (2.5.1). Moreover, taking X, = Z, =land Yy, =S, = 64,
we have XO j G(XO’ yoy ZO)SO)I yo + G(yO’ ZO'SO' XO)’
Zy = G(25, 50, %1 Yo) and Sy £ G(Sy, X, Yo Z) -

1
since G(X, X, X, X) = log§( %)12 +1=1og8+1=3log2+1.

we observe that 3log 2 +1 is a quartet fixed point of G .
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